AdaGIDE : A Friendly Introductory Programming
Environment for a Freshman Computer Science Course

Martin C. Carliseand A.T. Chamillard
Computer Science Department
2354 Fairchild Dr., Suite 6K41

U.S. Air Force Academy, CO 80840-6234

{mcc, achamill}@cs.usafa.af.mil

1 INTRODUCTION

We have recaitly transitioned the programming language in our Introduction to Computer
Science @ourse & the U.S. Air Force Academy from Pascd to Ada. Providing an intuitive and
straightforward Integrated Development Environment (IDE) for Adathat is suitable for freshman
use has been one of our greaest challenges. Although we recognize that a number of Ada IDEs
are available, these IDEs do not seem to be designed for beginning programmers. Most of them
are ather too expensive for students to purchase or are designed for development of large
programming projeds, carying significant overhead for the small programs we require in our
freshman course. Error messages tend to be fairly complicaed, assuming a relatively thorough
understanding of the language syntax and semantics. Finally, both commercial and freeIDEs can
have extensive lead time for bug fix development and are not readily extensible.

These mncerns led us to develop a Windows 95 Ada IDE that is freeto the students, contains
the gpropriate level of functionality for our freshman course, has a minimal lead time for bug fix
development (since we maintain the de in-house), and can be ealy extended to contain
additional help for the students. Because we implemented this environment in Ada we can aso
demonstrate to our students that Ada is applicable to red, large projeds, and its usefulnessis not
limited to the small programs they crede in the freshman course. This paper describes our
preliminary experience with this environment.

The next sedion hriefly describes the IDE and the third sedion lists a number of issies we
have facal trying to interfaceto Windows 95. The fourth and fifth sedions discuss $udent and
faaulty readion to and use of the environment. The final sedion presents our conclusions and our

plans for future enhancements to the IDE.

2 IDE DESCRIPTION

Our IDE, which we cdl AdaGIDE (for Ada Graphicd IDE), uses Gnat for compiling and linking
and uses a Windows 95 Graphicd User Interface that is built on top of Windows libraries,
particularly the Win32Ada binding. AdaGIDE includes relatively standard file manipulation
(New, Open, Save, Save As, Print), editing (Undo, Cut, Copy, Paste, Find, Replacg, and
compilation (Compile, Build, Exeaute) functiondity. The environment aso includes svera
functions that do not seem to be nearly as common.

To help students reaognize when they make simple typographic erors, we receitly added a
color-coding capability for the program text in the elit window. In other words, we use unique
colors to distinguish comments, numeric constants, reserved words, and string literals from other
program text (and each other).

One complaint that Pascd (and other language) programmers have dout Adais the inability to
easly comment out large blocks of code, a caability that can be helpful during the debuggng
process AdaGIDE provides the cgability to highlight an arbitrarily large block of the program
and turn the entire highlighted block into a set of comments with a single button click. Similarly,
blocks of code can also be highlighted and then “uncommented”.

We dso find that students tend to ignore our programming standards, which address sich
isaues as capitalization and indentation. While it is relatively easy to pendlize the students, it is
gtill painful to grade programs that do not contain proper capitaization and indentation. In
addition, we would adually prefer that our students gend their time leaning and understanding
Ada rather than aceomplishing “busy work” to med our programming standards. AdaGIDE
therefore includes a reformat capability that can be seleded by clicking a button. When reformat
is &leded, reserved words are dhanged to either upper case, lower case, or mixed case based on
user preferences. The user seleds from these same options for cagpitalization of identifiers. In
addition, indentation is modified based on the lexicd scope of ead line in the program. We have
set the defaults for reformat to our programming standards, and most students perform the

reformat before submitting their programs for a grade.

3 INTERFACING TO WINDOWS 95/NT

This ®dion discusses a number of isues we have facal interfadng to Windows 95/NT using the
Win32Ada binding. Most of these isaues relate to Ada' s use of strong typing. Win32Adais athin
binding to C library routines; these routines are wedkly typed. As a result, our code @ntains
many more uses of Unchedked Access and Unchedked_Conversion than we would like. The
other main difficulties encountered were the difference between C and Ada strings, and the
problem of elaboration order. We begin by examining the dallenges for both Windows 95 and
NT, and then address NT-specific issues.

Since C procedures use pointers to loca variables rather than OUT parameters, an Ada
program that cdls one of these procedures has two choices. either pass a pointer to a global
variable, or use a1 Uncheded Accessto a locd variable. Unchedked Access s, in general,
unsafe & you may crede apointer to a variable that will be dedlocaed before the pointer is;
however, since we know that the C procedure will not keep a cpy of this pointer, we can safely
use this mechanism.

Our uses of Unchedked_Conversion mostly occur when passng a message to a Windows
control. The SendMessage procedure takes 4 arguments. the handle of (pointer to) the control,
an integer message identifier (e.g. GET_TEXT), and two integer parameters (wparam and
Iparam). Since C is not an objed-oriented language, SendMessage is not overloaded for the
different types of parameters the messages might require (for example, the GET_TEXT message
requires a pointer to a buffer that will receve the text from the cntrol). Instea, the pointer is
cast to an integer, sent to SendMessage, and the gopropriate message handler recasts the integer
badk to a pointer. To acawmplish this in Ada, a large number of Uncheded Conversions are
used.

Another source of difficulty (and Unchedked Conversions) is the difference between how
strings are implemented in C and Ada. In C, a string is a pointer to a dharader; the following
memory locaions contain the rest of the string, up to the first zero. Ada strings have aparticular
size and are not null-terminated. Fortunately, if an Ada string, S, ends with Charader’First (i.e.
ze0), then one can smply do an Uncheded_Conversion on S(S First)’ Address to obtain a
pointer to a C-style string. One must be caeful doing this to avoid credaing pointers to

deallocated memory, as found in the following code fragment:

TYPE CharPointer IS ACCESS ALL Character;
FUNCTION AdaStringToC(X : IN String) RETURN Win32.LPSTR IS
FUNCTION Convert IS NEW Ada.Unchecked_Conversion(CharPointer,
Win32.LPSTR);
BEGIN
RETURN Convert(X(X'First)’Address);
END AdaStringToC;

PROCEDURHMHasError IS

Y : String(1..13) := “Hello World
Z : Win32.LPSTR;
BEGIN
Z:= AdaStringToC(Y & Character’First);

-- more code that uses Z
END HasError;

In this code fragment, the user wishes to null-terminate the string Y, and then convert it to a C-
style string so that it can be passed as an argument to a Windows procedure. Unfortunately, the
memory allocated for the string Y & Character’First may be reused by the compiler after the
cdl to AdaStringToC completes, causing the results to be unpredictable. We solve this problem
by having two conversion routines. We use the &ove @nversion routine for staticdly allocaed
strings such as globaly alocaed strings (unfortunately the ade does not enforce this
convention). We have another function that takes in an Ada string, dynamicaly alocaes memory
for the same string with the addition of a null terminator, and then returns a C-style string pointer.

The last problem we aldress with the Windows 95 implementation of AdaGIDE involves
the order of padage daboration. Certan Windows routines (most notably
IntCommonControls , the necessty of which we & first overlooked--causing various ill egal
operation errors at unpredictable locaions in the program) need to be run before others. While
one can use pragmas to enforce an elaboration order on the padkages, we found it easier to have
the main procedure explicitly initidize the @ntrols in the gpropriate order, and to use the
sequence of initidlization statements in the padkage bodies only for non-Windows related
initialization.

Fortunately, once these problems were addressed, it was relatively straightforward to dbtain

aWindows NT exeautable from the Windows 95 version. The most notable difference was that

NT does not support the button style BS BITMAP. Thismeansthat to get the pictures to appea
on the buttons in the NT version, one must use an owner-drawn hutton type, and handle the draw
item messages. Windows NT also enforces sme seaurity fedures for the registry and creding
processes that were initially ignored in the Windows 95 version. In the end, the Windows 95 and

NT executables were identical.

4 STUDENT REACTIONS

As noted above, we dedded to develop AdaGIDE for a number of reasons. The environment we
used last semester was designed for larger projeds with multiple programmers, so there was a
significant amount of overhead associated with writing even small programs. The students also
felt that the error messages in this environment were vague and confusing.

Our freshman computer science ourse is taken by all students at the Air Force Academy, not
just computer science mgjors. Although student response to AdaGIDE has been generaly
favorable, the wide diversity of student programming skill s and interest has led to some surprising
problems. For example, the students needed to follow a simple ten step processto instal the
environment, but approximately 26% were unable to acamplish the steps corredly. We plan to
avoid this problem next yea by pre-installing AdaGIDE on al Freshman computers, but this
experience shows us that we neal to continue to keg the AdaGIDE interface & smple &
possble. Students also appea to exped an “industrial strength” product and ad shocked when a
bug is found. We develop most bug fixes in a matter of hours, but the students are hesitant to
install the upgaded version from the network drive. Finally, although the Gnat error messages
are more descriptive than those from the environment we used last semester, students gill have
difficulty interpreting them. We discuss potential solutions to this problem in the next section.

To more formally quantify student readions to AdaGIDE, we surveyed 389 of the 453
students currently enrolled in the murse (instructors did not give the survey to the remaining 64
students). A summary of that survey is provided in Table 1.

When asked how easy AdaGIDE is to use wmpared to other Windows 95 software (i.e.,
Word, Excd, etc.), 78% of the students responded that AdaGIDE is the same or easier. While
we ae very pleased with this result, we believe that some of the students may have interpreted

Yes No Much Easier| Same | Harder| Much
Easier Harder

Were you able to
successfully install 288 101
AdaGIDE the first time | (74%) | (26%)
you tried?
How easy iAdaGIDE to 5 75 297 63 19
ions o sy @ | a0 | 6| asw | 6%
Do you use Reformat? 214 175

(55%) | (45%)
If you use Reformat, isitf 160 54
useful? (75%) | (25%)
Comment % | 293
Uncomment buttons? (25%) | (75%)

Table 1. Student Survey Results
this question as “How easy is it to write a ©rred program compared to generating a Word
document”, so the ease of use may be even better than the 78% indicates.

We also asked how many students use the reformat feaure. Surprisingly, 45% of the students
do NOT use this feaure! This result does not imply that the students manually use the corred
cgpitalizaion and indentation rules, becaise they don't - they would apparently rather lose points
on their assgnments than use Reformat. To be fair, however, we must admit that there was a bug
in the reformat code in the origina relesse of AdaGIDE. This bug occasionally caused the
student’s program to be eased when they tried to use Reformat, so a large portion of student
resistance to using Reformat could be due to this original bug (even though it was fixed severa
months ago). Of the 176 students who responded that they use Reformat, 25% said they don't
find it useful.
cgpitalizaion and indentation, but do not see ay benefit (such as increased readability) from

We infer that these 44 students use the function to avoid losing points on

capitalization and indentation.

When questioned about use of the comment/uncomment fedure, only 24% of the students
responded that they use this fegure. There were indications, however, that this feaure was not as
well-publicized as it could have been (for example, questions like “What comment/uncomment

feaure?’ were common). This feaure was included in the original release of AdaGIDE, but we

did not provide user manuals, nor did we give more than a very brief tutorial on using AdaGIDE.
We plan to solve this problem in the future by providing more extensive documentation.

The last question we asked in our survey was “W hat additional feaures would you like to see
added to AdaGIDE?" The responses can be divided into interfacefunctionality, code generation,
and debugging help.

The first caegory the students would like to see alded, interfacefunctionality, includes more
extensive print options (preview, page seledion, 4 per page, and so on - we receitly added the
cgpability to seled portions of the program for printing), right mouse dick functiondity (cut,
paste, etc. - recently added), autosaving, automatic indenting and capitalizing (on the fly),
automatic line wrapping, and spell cheding. At least one student would also like avocd natural
language interfaceto the environment, but we' ve placed that additional functionality fairly low on
our priority list.

The second caegory of additional functionality, code generation, is adually quite intriguing to
severa faaulty members. The students have not proposed anything as extensive & true automatic
code generation. Instead, several students siggested providing templates of common commands
used in their code, which they could then fill i n with the gpropriate parameters. For example, an

output statement template might look like:

Ada.Integer_Text 10.Put (Item => ..., Width => ...);

where the students would replacethe dli pses with the gpropriate parameters. Our focus in the
course is on using Ada to solve problems, so we ae not particularly concerned with evaluating
student memorization of language syntax. In fad, for the tests that we give on Ada, we dlow
students to use their textbooks to look up the syntax, so it seans reasonable to provide automated
syntax help in AdaGIDE as well. We should note, however, that there is gill some discusson
among faculty members about whether or not providing these templates is a good idea.
The third, and by far the most common, request for additional AdaGIDE functionality was in
the aea of debuggng help. For instance the students would like to see more descriptive
compiler error messages. We plan to provide these in a later release, but we have dso noticed an

interesting phenomenon in terms of student readion to error messges. Although students

request more detailed error messages, it seams as though they don't read the messages currently
provided - insteal, as 90N as they get an error message they request help from the instructor or
from a fellow student. While there ae cetainly some students willi ng to real the eror messages
to try to understand them, most students use the gproach described above. We found this
somewhat surprising, since one of our motivations for moving from our previous environment to
AdaGIDE was the darity of Gnat compiler messages. This has not provided the benefits we had
expeded gven current student readions to error messages. We provide an on-line help fadlity
with descriptions, examples, and page references for Ada onstructs commonly used in the
course, but students have dso requested more ntext-sensitive help, which we plan to provide
(see future work). Another useful suggestion is to provide the offending line number when a
program raises an exception and terminates. Unfortunately, it appeas to us that this may be
difficult to provide. Finaly, severa students requested a debuggng faality in which they can step
through the program, observing the values of various variables during exeaution. This is also

planned as a future enhancement.

5 FACULTY REACTIONS
Readion from the faaulty has also been generaly favorable, again with some reservations. Color
coding of program text was provided in the environment we used last semester, and becaise many
faaulty members fed that including this feaure enhances the usability of our IDE we alded this
cgpability in a later relesse. Some faaulty members also fed that the first version of the
environment, particularly the reformatting, should have @vered the eitire language and should
have been hug-free We ae using an incremental approad for our development, in which we
iteratively add functionality, but some faaulty members would prefer to wait (forever, we susped)
for a “perfed environment”. The arrent version of AdaGIDE contains full functionality for the
freshman course, while later versions will cover more advanced features of the language.
We dso surveyed 13 faaulty members using the environment to more formally colled their
readions, results sgnificantly different from student results are summerized in Table 2.
Surprisingly, 23% of the faaulty were unable to install AdaGIDE on the first try (compared to
26% of the students surveyed). 85% of the faaulty rated AdaGIDE as the same or easier to use

than other Windows 95 software, which is comparable to the 79% from the students.

Yes No N/A | Much | Easier| Same| Harder| Much
Easier Harder

Were you able to
successfully install 10 3
AdaGIDE the first (77%) | (23%)
time you tried?
How easy isAdaGIDE
to use compared to 1 13 3 2 0
other Windows 95 (8%) | (54%) | (23%)| (15%)
software?
Do you use Reformatp 7 6

(54%) | (46%)
If you use Reformat, is 7 0
it useful? (100%)
Do you use the 8 5
Comment/ o 3804
Uncomment buttons? (62%) | (38%)
Do you like color-
coding of reserved 13 0
words, comments, ang (100%)
literals?
Do you prefer
AdaGIDE to previous| 13 2 1
environments for this | (77%) | (15%) | (8%)
course?
Do you prefer
AdaGIDE to other 8 5 3
environments for (62%) | (15%) | (23%)

upper division

courses?

Table 2. Faculty Survey Results

For the reformat function, 46% of the faaulty don’'t use the provided functionality (compared

to 45% for students).

We susped that some instructors smply prefer to type the ade in

corredly as they go, but others have been frustrated by the fad that our initial reformat capability

only covered the basic structures used in the course. Of the 7 faaulty who do use reformat, all

find it useful. 62% of the faaulty use the comment/uncomment fedure (compared to 25% of the

students) - we susped this is because of better communicaion among the faaulty about this

feaure, and also because the faaulty redize the benefit of commenting out seleded portions of

code during the debuggng process All of the faaulty surveyed liked color-coded reserved words,

identifiers, anditerals.

When asked if they prefer AdaGIDE to previous environments used in the @urse, 10 said they
did, 2 said they did not, and 1 cedined to comment (thisis his first semester on the faaulty). For
upper divison courses (e.g., those for our sophomore, junior, and senior majors), 8 faalty
members sid they prefer AdaGIDE to other environments, 2 said they did not, and 3 dd not
comment. Finaly, when asked to comment on response time for bug fixes, 1 faaulty member was
neutral (no comment), 3 rated response time & good, and 9 rated response time & very good (the
highest rating). Since d bug fixes have been provided within 24 hours, we believe the 3 good
ratings reflect faculty impatience with enhancements to the reformat capability.

The list of desired enhancements provided by the faaulty closely matches the list provided by
the students. The only additional request was for a Multiple Document Interface (MDI) for
AdaGIDE. Although multiple instantiations of AdaGIDE can be run concurrently, with full
cut/copy/paste functionality between them, the purists argue (corredly) that multiple
instantiations would not be required if an MDI were provided. We aree but have set this as a

low priority compared to our other future work.

6 CONCLUSIONSAND FUTURE WORK

We ae pleased with the progresswe have made developing an Ada IDE that is suitable for use in
our freshman course - in fad, we have dso started using AdaGIDE in our sophomore-level
programming languages course. Interfadng with Windows 95 has led to unattradive mde and
subtle bugs in some caes, but student and faaulty readion to the environment is generally
positive. We therefore plan to continue development of the IDE by implementing additional
functionality in the interface.

One such enhancement is driven by the fact that our freshman students ssem to have adifficult
time discerning the meaning of the Gnat error messsges. While these aror messages sanm
descriptive to the cmputer science faaulty, it is clea that the students could use alditional help
interpreting the messages. Therefore, one of our future enhancements will be to provide on-line
error message daboration. By double-clicking an error message, students will be &le to open a
dialog box that explains potential causes of that error in further detail. Within this dialog box, we

also plan to provide references to areas in the @urse textbook that addressthe syntadic construct

10

causing the eror. We believe the combination of error message daboration and references to the
course text will greatly improve the students’ ability to correct syntax errors in their code.
Although many of our students believe that successul compilation is equivalent to corred
program behavior, it seams that a debuggng fadlity should also be provided in the IDE. Our
future work therefore includes developing an IDE interface to an existing debugger.
Finally, we plan to expand our reformatting tool to cover more fedures of the Ada language

(exception handling, for example).

11

